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Abstract
Data augmentation has become a central strat-
egy in computer vision models in recent years.
It is possibly even more important in the video
paradigm, where annotated data is that much more
expensive and challenging to obtain. This paper
reviews recent literature for data augmentation
techniques, specifically as applied to video object
tracking and video segmentation tasks. It identi-
fies several promising approaches, catalogs which
papers have used which augmentation methods,
and explores a promising opportunity for future
research.

1. Introduction
Object segmentation and tracking are two core problems in
computer vision. In object segmentation, the task is to label
each pixel of an input image to associate the pixel with a
real-world object. Effectively, this means generating one
or more masks indicating where objects exist in the image.
Video object segmentation, then, refers to generating a mask
for a particular object for every frame of a video. In object
tracking, the goal is to not only locate one or more objects
in each frame of a video (usually by producing a bounding
box), but also to maintain continuity between frames so as
to understand how each object moves over time.

While these are distinct problems, it is easy to see how
they are related and how solving each can contribute to
solving the other. Segmentation masks give an easy way
to find bounding boxes for the object tracking problem,
while bounding boxes from a tracking solution give a rough
estimate of the segmentation problem and help demystify
deformation and temporary occlusion. In fact, by solving
one problem one must solve the other, at least partially [77].

Modern deep models for video object tracking and segmen-
tation have huge numbers of parameters and require a lot of
training data, but labeled video data is particularly expensive
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to create because of the large number of images (frames)
that require annotations. When insufficient training data
is available, models tend to overfit and fail to generalize
well to test data. This paper explores the recent literature
in search of data augmentation techniques to solve this data
scarcity problem.

Several other survey-style papers [54; 77; 46; 44] proved
invaluable in locating materials for this work.

In the next section, a wide variety of techniques are de-
scribed. Basic techniques that are assumed to be well-
understood are just listed along with a list of references
where they have been used recently. More advanced tech-
niques are described in detail. Section 3 proposes a future
research possibility. Section 4 identifies some related works
that fall outside the scope of this paper. Finally, closing
thoughts are offered in section 5.

2. Techniques
There are quite a number of data augmentation techniques
covered in the literature. They can be broadly categorized
as heuristic or learned. Because segmentation and tracking
in video are related so fundamentally to their underlying
still image counterparts, all the standard data augmentation
techniques for image problems apply. Hence, techniques
can be further decomposed into video-specific techniques
versus those more generally applicable to still images.

2.1. Heuristic Techniques for Images

Heuristic techniques are those that are hand-designed based
on some assumption about the dataset distribution. For ex-
ample, the intuition is that changing the brightness of an
image doesn’t change the location of a target object within
it, so brightness-based augmentation is used for object de-
tection data. Heuristic augmentation techniques for images
fall into a few high-level categories which will be covered
in the remainder of this section. See figure 1 for some select
examples.
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Figure 1. Heuristic augmentation examples (image credit [13]).

2.1.1. GEOMETRIC

Geometric data augmentations are those that change an
image by somehow morphing its shape or orientation. This
type of augmentation is used extensively through much of
the literature. In no particular order, these include:

• Translation [12; 22; 62; 87; 16; 70; 15; 31; 48; 74; 5;
90; 10; 13; 23; 4; 24; 41; 25; 20; 60]

• Rotation [53; 12; 68; 22; 64; 76; 42; 88; 87; 6; 19; 39;
63; 79; 5; 13; 23; 4; 24; 41]

• Scaling [53; 12; 68; 62; 50; 64; 59; 83; 58; 88; 6; 19;
39; 61; 70; 15; 63; 66; 65; 74; 90; 47; 25; 75; 60]

• Flipping [43; 53; 12; 68; 50; 72; 59; 11; 40; 42; 88; 6;
19; 79; 38; 5; 47; 21; 23; 4; 24; 20]

• Shearing [12; 22; 19]

• Thin Plate Splines (TPS) [12; 64; 83; 39]

Also known as elastic deformation, this method de-
forms the image by setting a number of control points
and randomly shifting them within a specified size
range.

Some papers [37; 81] indicate more generally that they
use affine transforms, which means they are using some
combination of geometric transformations.

2.1.2. LIGHTING

Lighting-based augmentations adjust images by changing
their pixel values in a uniform way across the entire image.

• Grayscale [12; 59; 58; 88; 7; 90; 25]

• Gamma [43; 12; 59; 58]

• Brightness [12; 22; 35; 83; 16; 79; 74; 90]

• Contrast [12; 22; 35; 83; 74; 90]

• Saturation [12; 35; 83; 42; 74]

• Color [12; 22; 89; 63; 49; 74; 47; 23; 25]

2.1.3. DESTRUCTIVE

These methods work by removing some part of the image
content in an irreversible way. This means adding noise or
arbitrarily setting pixel values.

• Erasing [12; 72]

This means setting pixel values to zero in randomly
chosen rectangular regions within the image.

• Cropping [12; 64; 11; 76; 83; 39; 61; 31; 48; 18; 47;
41; 60]

This is using a rectangular subregion of the image as
input instead of the full original image.

• Blurring [12; 59; 58; 88; 87; 5; 90; 21; 13; 23; 4; 24;
20]

These techniques blur the entire image with a Gaussian,
median, or other blurring filter.

• Noise [13; 20]

In these papers, the authors apply salt & pepper or
Gaussian noise to the input images.

• Mosaic [13]

Effectively a very low-resolution blur, this technique
averages the pixel values across rectangular subregions
of uniform size (see figure 1).

2.1.4. DROPOUT

Dropout is a different form of regularization. For each layer
of a neural network, applying dropout means randomly
choosing some percentage p of its weights for each train-
ing example and setting them to zero. Effectively, p of the
layer’s units are dropped out for that training example. Look-
ing at this a different way, each example is passed through
a randomly thinned sub-model, and the final trained model
is an average over those sub-models. One intuition for how
this improves performance is that it prevents co-adaptations,
where a unit learns to compensate for mistakes of another
unit. Because the set of neighboring units changes, a unit
cannot learn to rely on the behavior of any other unit.
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While this doesn’t operate directly on the training data, and
isn’t generally viewed as a data augmentation technique, it
does have a similar effect. Imagine that instead of applying
dropout, some subset of the pixels of an image were set to
zero. The outcome would be similar: the corresponding
set of units would have no effect, because they would be
multiplied by zero-valued pixels. The difference here is
that zeros in an image will propagate through all layers
of a network, but that dropout is applied on a per-layer
basis. In the end, dropout behaves like a certain kind of data
augmentation in the latent feature space.

Because of its generality, dropout is applicable to any kind
of neural network and isn’t limited to images or videos in
particular. It is a very common regularization technique in
the literature [12; 35; 34; 89; 5; 23; 4; 24].

2.1.5. SIAMESE SEARCH-EXEMPLAR PAIRS

Following the 2015 addition to ImageNet of a video object
detection dataset [51], a novel technique was proposed [3]
for object tracking. They designed a fully convolutional
Siamese network to solve a general similarity learning prob-
lem, and then applied it to the object tracking problem at
evaluation time. While not a data augmentation technique
in its own right, this formulation lends itself naturally to a
particular style of data augmentation.

A Siamese network is an architecture designed for compari-
son problems. It applies an identical transformation to each
of two inputs, and then combines their corresponding repre-
sentations with another (possibly learned) transformation.
As a straightforward example, the transformation applied
to the inputs may be an embedding network, and the subse-
quent combinator might be a simple distance metric.

For the object detection problem, the authors designed a
Siamese network that takes two images as inputs: a larger
search image and a smaller exemplar image. By using a
cross-correlation operator as the final comparison layer, they
produced as output a two-dimensional grid of scores, where
each score indicates the probability of the exemplar image
appearing at the corresponding position in the search image.
See figure 2 for an overview of the architecture.

They trained the model offline using both positive and neg-
ative image pairs from the ImageNet Video dataset. For
each training pair, they selected two nearby frames from the
same video. They used a large crop from one frame as the
search image and a smaller crop from the other frame as the
exemplar image. For positive examples, both crops were
centered on the target object. The crop strategy for negative
examples was not specified. The ground-truth labels for the
score grid were set to +1 within a fixed radius of the ob-
ject’s true center, and -1 outside that radius. In this way, the
network was trained to predict which region of the search

Figure 2. Siamese network architecture for object detection.

image was most similar to the target object.

At inference time, the embedding of the target object was
computed once and then compared (at multiple scales) to
search windows in each subsequent frame. Notably, no
online fine-tuning was applied at test time, and the offline-
trained network was directly tested against multiple bench-
mark datasets. Because no online fine-tuning was required,
the model ran much more quickly than other contemporary
models, and still showed very good results.

This network architecture is conducive to data augmentation
because its training data is inherently generated from crops
of larger images. By adjusting the cropping technique, many
training examples can be created from each input image.
This can be seen in many of the papers that built upon the
architecture over the following years [62; 37; 86; 59; 88; 80;
87; 1; 16; 30; 78; 70; 90; 47; 13].

2.2. Learning-Based Techniques for Images

2.2.1. SMART AUGMENTATION

In [36], the authors designed a type-agnostic learning-based
augmentation method called Smart Augmentation. Given
a downstream network that would benefit from data aug-
mentation, they trained an augmentation network to provide
useful augmentations for the downstream network. Specifi-
cally, their augmentation network learned to combine a set
of inputs of a single class into a new example of that class.
With the idea that the augmentation network should both
improve the downstream network and generate examples
that are similar to the existing training data, it was trained
using a combination of two loss values. The loss from
the downstream network was propagated back through the
augmentation network, and the output of the augmentation
network was compared to another training input from the
same class for similarity. Figure 3 shows the network archi-
tecture and loss functions, and figure 4 shows an example
of its output.

Through a number of experiments, they showed that Smart



Data Augmentation for VOST

Figure 3. Smart Augmentation architecture.

Figure 4. Sample image (left) generated by Smart Augmentation
from two input images (center, right).

Augmentation could significantly improve the performance
of downstream networks. They also showed that Smart
Augmentation performed better than one particular selection
of traditional augmentation techniques (flip, blur, and slight
rotation). They showed that Smart Augmentation worked
well in combination with other traditional augmentations,
so it could be added to an existing training regimen without
hurting performance.

More extensive experimentation would be needed to decide
whether Smart Augmentation is more effective than tradi-
tional augmentations in general. There is also a trade-off, of
course, in that the additional augmentation network takes
additional computational resources to train. The authors did
not quantify this change in training time in the paper. On
the plus side, because of its general nature (it can be applied
to any format of input data, so long as the data is separated
into classes), this is a promising technique for extension to
new problem types.

2.2.2. AUTOAUGMENT

AutoAugment [22] is a reinforcement learning technique
that learns augmentation strategies for image classification
tasks. The authors trained a controller network to learn data
augmentation policies using a reward function based on how
well the downstream network performed with the selected
policy. Each learned augmentation policy was composed
of five sub-policies. Each sub-policy was a sequence of
two heuristic augmentation techniques, with corresponding
probability and magnitude values. For example, one of the
learned sub-policies in a successful ImageNet policy was

Equalize with probability 0.4 and magnitude 4 followed
by Rotate with probability 0.8 and magnitude 8. In the
downstream network, each training example is augmented
with one randomly selected sub-policy.

Figure 5. Examples of augmentation policies learned by AutoAug-
ment for ImageNet and SVHN datasets.

Through their experiments, the authors showed that Au-
toAugment dramatically improved performance of base-
line models on many image classification datasets. They
also showed that the learned augmentations were somewhat
transferable. For example, augmentation policies learned
on ImageNet also performed well on several other datasets.
However, the controller did learn to produce different strate-
gies for different datasets, and directly training on the in-
tended dataset produced even better results than transferring
a policy learned for another dataset. As an example, the poli-
cies learned for ImageNet tended to include mostly color
transformations while those learned for the house numbers
dataset (SVHN) contained mostly geometric transforma-
tions (see figure 5).

This was a really strong paper and it set a new standard for
learned data augmentation. The cost, as with any learned
augmentation technique, is in the additional required train-
ing time. As with Smart Augmentation, however, this is a
really interesting approach that could be adapted to any kind
of downstream task. For other image-based tasks, like object
detection or segmentation, this could be applied directly.

2.2.3. INSTABOOST

InstaBoost [27] is another augmentation technique that has
not been applied to video-based problems, but that might
prove useful in that context. This has been shown to improve
instance segmentation results by simply cut-and-pasting the
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objects, along with their masks, to another position. When
pasting the objects, the authors applied affine transforma-
tions including scale, rotation and translation following a
probability distribution to place the objects in likely posi-
tions.

In their initial approach, the authors followed the simple
intuition that images tend to be continuous and redundant
at the pixel level. They posited that in a given image, the
areas in the immediate neighborhood of an object would
also have a high likelihood of containing the object. So
they chose transformations randomly in a small neighbor-
hood of the original position. This augmentation technique
yielded significant improvements on instance segmentation
benchmarks using state of the art models with no other
adjustments.

To improve the performance further, they learned a more
robust probability model from the training data itself. They
expanded the feasible target region based on the assumption
that objects are more likely to appear on semantically sim-
ilar backgrounds than on different ones. They produced a
heatmap of likely locations based on local appearance simi-
larity of the background. Instead of choosing destinations in
the local neighborhood of the original object position, they
chose the new location according to the generated heatmap
(see figure 6). This resulted in further improvements on the
instance segmentation benchmarks.

Figure 6. Input image (left) along with heatmap (center) and output
image (right) generated by InstaBoost.

This is a really nice approach because it’s simple and can
be easily integrated into the training pipeline of any existing
segmentation model. It could be used to improve augmenta-
tion / generation techniques for video data by guiding object
placement toward plausible regions in the frame.

However, some choices were not explained very thoroughly.
First, the authors divide the background region into three
nested regions centered around the target object and weight
the similarity metric differently for each region. While the
intuition is mentioned, it’s not clear why three was the cor-
rect number of regions or how the relative weights were
chosen. It seems further experimentation is warranted here.
Second, exhaustive comparison of all target regions is com-
putationally expensive, so the authors downsample the im-
ages to a fixed size before heatmap generation. Again, the

intuition is clear here, but some specifics as to how the target
size was chosen and what other methods were considered
would be helpful.

Overall, this is a nice paper despite wanting for some minor
details.

2.3. Video-Specific Techniques

2.3.1. SEMI-SUPERVISION USING GRAPHICAL MODELS

One of the earliest approaches used specifically for data
augmentation in video segmentation was [8], in which the
authors designed a probabilistic graphical model for semi-
supervised video segmentation. They modeled correspon-
dences between patches of pixels over time as a tree struc-
ture, and trained a generative model to estimate patches of
the current frame based on the previous frame. To combat
bias, they also ran their model in the reverse direction (with
the tree rooted in the last frame instead of the first) and
averaged the results. Taking as input a video sequence and
a single ground-truth segmentation mask for the first frame,
they propagated that mask through all subsequent frames
to effectively generate labeled masks for the entire video.
The method was more computationally efficient and more
effective than other competitive approaches at the time.

Because of the cost of manually labeling many frames of
video data, most video datasets only label a small subset of
keyframes for each video. In [9], the authors used the PGM
method of [8] to automatically label additional video frames
for three such datasets: CityScapes, CamVid, and CamVid-
Instance. They then evaluated six segmentation models on
the class segmentation datasets, and two segmentation mod-
els on the instance segmentation dataset. They compared
results after training on just the original datasets with the
results after training on the augmented data, and showed
that training on the automatically-generated augmented data
significantly improved both class and position accuracy.

This was effectively a transductive supervised learning ap-
proach, but it was an unusual example of actually generating
and storing all of the augmented training data up front. It
also stood out as the only quantitative measure of the effec-
tiveness of data augmentation for video segmentation at the
time.

2.3.2. ADVERSARIAL LEARNING: VITAL

One interesting new technique for handling inadequacies
in training data came in 2018. In [55], the authors used
a novel adversarial architecture in hopes of capturing rich
appearance variations in positive training samples. While
they argued that a traditional generative adversarial network
(GAN) architecture is poorly suited for object tracking, they
found a way to use a related approach.
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In a standard GAN architecture, a discriminator network
is typically used to improve the quality of the generator
network, and the useful product of the effort is a generator
that maps samples from one distribution to another (e.g.,
maps noise to realistic images). By contrast, in this work
the valuable outcome was the improved discriminator—the
generator was discarded.

The authors built upon a tracking-by-detection framework
by inserting a mask-generating subnetwork between the
feature extraction layer and the classification layer (see fig-
ure 7). The generated masks would hide features from the
classifier, forcing it to learn to classify the existence of the
target object on a subset of the available features. Mean-
while, the classifier loss was used to train the generator such
that the generator learned to mask the most important fea-
tures. In this way, the classifier learned to use only more
robust long-term features instead of overfitting to the most
discriminative features for individual frames.

Intuitively, imagine that the object to track is a person, and in
the first few frames the classifier learns to recognize the face
as the most important feature. If the person turns away from
the camera, the classifier will struggle to identify the person
in subsequent frames. In this adversarial masking approach,
the mask generator learned to mask the face because it was
the most important discriminative feature for the classifier.
In turn, the classifier learned to recognize the person based
on other features that were less likely to change from frame
to frame. From another perspective, this approach was a lot
like the commonly-used random erasing data augmentation,
except that the erasing was not random at all (or rather, it
became less random through training).

Figure 7. Network architecture for VITAL [55].

One major drawback to this approach is the computational
cost of introducing the mask-generating subnetwork. They
claim only 1.5 FPS. It would be interesting to see a compar-
ison of runtime between this network and a version without
the mask generator to understand how much overhead it
creates.

2.3.3. LUCID DATA DREAMING

Lucid Data Dreaming for Video Object Segmentation [33]
is a particularly interesting paper, and really feels more like

two papers in one. First, the authors designed LucidTracker,
a convolutional video object segmentation and tracking net-
work. Additionally, they devised Lucid Data Dreaming, a
method for synthesizing video data from a single image and
its corresponding mask.

For the LucidTracker network, they modeled the problem
as predicting an object mask for the current frame given a
five channel input: the RGB channels for the current frame
plus the mask and optical flow information from the pre-
vious frame. They also extended the approach to support
multiple object tracking by incorporating additional input
channels - one mask channel per object. They discussed sev-
eral training modalities, from a training-free, hand-designed
approach all the way down to fine-tuning for each video. In
general, though, they found that their model benefited from
training on labeled video data, which is expensive and hard
to come by.

Lucid Data Dreaming was their solution to the data problem.
Given a single input image and corresponding object mask,
they generated a pair of plausible adjacent video frames
with known ground-truth masks and optical flow. They did
this by cutting the target object out of the input image using
the given mask, infilling the background, transforming both
foreground and background images, and then pasting the
foreground object into a new position in the image. The new
object position was uniformly sampled for the first frame,
but then the difference between the two frames was kept
small. The transformations included illumination changes,
affine and non-rigid transformations of the foreground ob-
ject, and affine transformations of the background to simu-
late camera motion. Figure 8 shows the high-level concept
and some examples of generated frames.

Figure 8. LucidTracker / Lucid Data Dreaming concept.

The authors tested on three video object segmentation
datasets in which ground-truth masks were provided for
each frame. For each video, they trained on only the first
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frame along with 2,500 pairs of generated plausible future
video frames. They achieved better results than both flow
propagation methods and other deep models, and they used
significantly less training data than the competing deep
learning models.

While their tracker model was very successful, it’s the data
generation portion that proved even more interesting. It was
used to generate training data in a number of subsequent pa-
pers [43; 68; 2; 57; 69; 52]. There are two main drawbacks
to the paper, however. First, the data generation approach
is computationally expensive. Including fine-tuning first
for the dataset and then for each video, their approach took
about 3.5 hours per video. While fine-tuning for each video
is not required for their model to work, it does improve the
results. A useful experiment would be to try augmenting
the dataset with just one frame pair, or some small number
of pairs based on the amount of time taken to train on them.
Can this technique be applied to good effect in a (near) real-
time context? Second, it would have been good to see a
comparison between their data generation method and other
data augmentation techniques. Would a simpler approach
such as random transformations work just as well? In any
case, this one of very few promising methods for generating
video training data in the literature.

3. Open Problem
3.1. Learning-Based Augmentation for Video Problems

There has been very little work on learned data augmenta-
tions for video data. However, learning-based approaches
have shown some of the best results for other computer
vision tasks. AutoAugment [22] in particular is appealing
because of its generality. Since the same reinforcement
learning-based technique can be used to learn any sort of
policy, there is plenty of opportunity to apply it in the video
domain. The remainder of this section will discuss a pro-
posed approach. See figure 9 for an overview of the pro-
posed architecture.

3.1.1. OBJECT TRACKER

The core network to train is a Siamese object tracking-by-
detection framework, as in [3]. Because these have been
well-studied, there is a good deal of past work against which
to compare results.

3.1.2. AUGMENTATIONS

In order to keep the computation tractable while incorpo-
rating the most interesting techniques in recent literature,
augmentation policies will be composed of three augmenta-
tion techniques.

• VITAL [55]

For consistency with the other two augmentations, one
major modification is made to this adversarial mask
learning technique. Instead of learning masks in feature
space, the subnetwork is trained to generate masks in
the input image space, before crops are chosen for the
Siamese network. The magnitude parameter, ranging
from 0 to 0.5, controls how much of the input image is
masked.

• Lucid Data Dreaming [33]

Following this approach, the target object is cropped
out of the input image, transformed, and replaced. The
magnitude parameter, ranging between 0 and 1, con-
trols the degree of scaling, rotation, and TPS deforma-
tion applied.

• Smart Augmentation [36]

This technique learns to interpolate between multiple
input images to form a new in-distribution image. In
this application, it will combine two upcoming video
frames to form a new plausible video frame. The mag-
nitude parameter, ranging between 2 and 10, controls
the maximum distance to the farthest-future frame con-
sidered. For example, with magnitude 2 the next frame
and subsequent frame are always combined via Smart
Augmentation, but with magnitude 10 the next frame is
combined with a frame randomly chosen from among
the next 10.

3.1.3. POLICY DESIGN

As in AutoAugment [22], each data augmentation policy is
a set of five sub-policies and each sub-policy is a sequence
of two of the above augmentation techniques. For each sub-
policy, the chosen strategy is parameterized by two values:
the probability that it is applied, and the magnitude of the
operation if it is applied.

3.1.4. CONTROLLER NETWORK

The controller network follows the architecture defined in
AutoAugment [22]. Specifically, it is a single-layer LSTM
with 100 hidden units and a 30-dimensional linear output
layer with softmax predictions.

3.1.5. TRAINING

The training approach also follows AutoAugment [22]. At
each training iteration, the controller network produces a
policy in the form of a 30-dimensional vector (operation
type, probability, and magnitude for each of two steps for
each of five policies). The controller is trained using prox-
imal policy optimization (PPO), and its reward signal de-
pends on how well the child network (the Siamese object
tracker) generalizes after training with the predicted policy.



Data Augmentation for VOST

Figure 9. Proposed learned video data augmentation architecture.

To generate the reward signal, the predicted policy is used
to train the child network on the training data set. Then
the child network is evaluated on the validation set, and
the resulting accuracy is used as the reward value. The
reward value scales the gradient of the controller network
before backpropagation, so that the controller network as-
signs high probabilities for successful child networks and
low probabilities for poor ones.

4. Related Areas
This section briefly mentions some interesting related areas.
Although outside the scope of this review, the papers listed
here may pique the interest of the reader.

First, there are three other problem definitions related to
video object segmentation and tracking that have appeared
more recently. Multi-Object Tracking and Segmentation
[56] and Video Instance Segmentation [73] extend the video
segmentation problem to segmenting multiple distinct object
instances, and Multi-Object Panoptic Tracking [32] goes
one step further and requires segmentation of background
objects as well.

Next, several papers were encountered that design adversar-
ial attacks for visual trackers. This kind of technique could
be used as regularization or data augmentation as in [55],
but it was outside the scope of this work to review them in
depth. Some of the standout examples of adversarial attacks
are [29; 71; 17].

There was also a line of work specifically around tracking
in blurred video [28; 45; 67]. Augmentation could of course

help generate blurred video from non-blurred video, and in
general techniques that are successful on blurred video are
also successful on ordinary video.

TracKlinic [26] and Learning Multi-Object Tracking and
Segmentation from Automatic Annotations [50] both seek,
in one way or another, to evaluate what kinds of augmenta-
tions could be beneficial for what kinds of data. This could
be useful for designing distribution-invariant transformation
groups as described in A Group-Theoretic Framework for
Data Augmentation [14].

There is also some work on tracking with data other than
just video. One author, for example, has produced a few
works [85; 82; 84] on adding infrared imagery to video
data. This is an interesting line of thinking. If the real-
world application is to track objects in space, it is probably
worthwhile to seek other types of data to aid in the problem.

5. Conclusion
Data augmentation, while central to much of the recent com-
puter vision work, is relatively underrepresented in the video
segmentation and tracking literature. While many authors
are using traditional heuristic augmentations, it appears that
they are doing so somewhat arbitrarily. The most likely
explanation is actually that authors are applying the easiest
augmentations at their disposal, based on what is available
in their deep learning framework of choice.

Novel techniques for video data are rare and hard to find,
though the few that have appeared in recent years have been
very successful. Further exploration of these techniques is
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worthwhile. Since years have passed since the introduction
of some of the important video-specific approaches, it would
be very interesting to see them applied to new problems on
new hardware.

This paper covered a wide range of augmentation techniques
ranging from simple to clever. It gave an indication of how
often the various heuristic techniques are applied, and gave
a thorough summary of a handful of the more specific meth-
ods. It also proposed a way to combine reinforcement learn-
ing with some of the more interesting video augmentation
tools to learn which ones are best-suited to which datasets.
Finally, it included some pointers to related research areas.
It is hopefully a useful summary for newcomers to the field
or for those looking for potential open problem areas.
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